Performance Analysis of Evolved Artificial Neuromodulator Networks

Vahid Zagovic

7th January, 2019

Content

- Introduction
- Artificial Neural Networks (ANNs)
- Neuro-Modulator-Networks (NMNs)
- Experiment
 - Simulator (SIMMA)
- * Outlook
- References

Introduction

- * Artificial intelligence
- Machine learning
- * Deep learning
- * Fuzzy-control

Artificial Neural Networks (ANNs)

"The idea behind Artificial Neural Networks originally comes from Neurobiology and could be called a highly simplified version of a human brain. It is represented as a weighted graph where the nodes correspond to neurons and the edges to the connections between them[4]."

Artificial neuron

- analogy to biological neurons
- input signals
- weights
- activation functions
- output

An artificial neuron[5].

Basic structure of an ANN

Bachelor Projekt WS 2018/19

Neuromodulators-(NMs): Definition

"Neuromodulators are signaling molecules that play a role in the alteration of baseline neural activity. These neural effector molecules can increase or decrease baseline membrane activation. [6]."

Neuromodulators

- substances that can dynamically influence neurons
- NMs change characteristics of neural networks
- * typical NMs are:
 - acetylcholine
 - norepinephrine
 - serotonin
 - dopamin (all are also used as neurotransmitters)

Neuromodulatory systems

- signal important environmental events to the rest of the brain
 - organism can focus its attention on the object and respond quickly to the event
- * function = alter responses to risks, rewards, effort and cause target neural networks to sharpen
- NMS as foundation for cognitive function

Evolution

- biological evolution = change in the heritable characteristics of populations over successive generations
- principle in NMN
 - construct robust controllers against environmental changes
 - change the structure of the neural network
 - evolution of rates, intervals or reactions

Function of NMs

- NMs enable learning
- ability to drive decisive responses in neural networks
- take appropriate actions depending on context
- focus attention on important objects
- sharpen responses to environmental input
- better adaptation

Experimental Set-up

* Pole-balancing-task

* SIMMA

Inverted Pendulum on a Cart

Quelle: http://www.youtube.com/watch?v=fTK37EZzruk

Bachelor Projekt WS 2018/19

SIMMA (SIMulator for emMA)

- * EMMA (Embedded Mobile Agent)
- * RoboLab project
- designed as a Java framework
- * basic concepts and characteristics:
 - modualrity
 - discrete time
 - environment
 - physics
 - reporting
 - run mode

SIMMA Pole-Balancing-Task

SIMMA - recording

Outlook

- advantage of NMs
- * what else could be experimented:
 - different lenght and/or weight of the pole
 - different weight of the robot

References

[1] Helmut A. Mayer: SIMMA – A Simulator Framework, Technical Manual, May 28, 2014

[2] Akio Ishiguro, Siji Tokura, Toshiyuki Kondo, Yoshiki Uchikawa, and Peter Eggenberger: Reduction of the Gap between Simulated and Real Environments in Evolutionary Robotics: A Dynamically–Rearranging Neural Network Approach. In IEEE Systems, Man, and Cybernetics Conference, pages III – 239–244. IEEE, October 1999.

[3] Helmut A. Mayer and Gerald Wiesbauer: Dynamic Regulation of Hebb Learning by Artificial Neuromodulators in Mobile Autonomous Robots. In IEEE International Conference on Systems, Man & Cybernetics, pages 2107–2112. IEEE, October 2003.

[4] Ritter, Helge; Schulten, Klaus; Martinetz, Thomas: Neuronale Netze. Eine Einführung in die Neuroinformatik selbstorganisierter Netzwerke, Addison-Wesley, Bonn/München Reading/Mass (u.a.) 1991.

[5] Stefano Nolfi and Dario Floreano. Evolutionary Robotics – The Biology, Intelligence, and Technology of Self–Organizing Machines. MIT Press, 2000.

[6] Binder, Marc D., Nobutaka Hirokawa, and Uwe Windhorst, eds. "Encyclopedia of neuroscience." (2009).

Bachelor Projekt WS 2018/19

Thanks for your attention!

